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WAVE SUPPRESSION UNDER THE ACTION OF A VISCOUS FILM 
ON THE SURFACE OF AN IDEAL FLUID* 

P.A. VISLOUSOV and E.N. POTETYUNKO 

We use below the linearized Euler's equations for an ideal fluid occupying 
the lower half-space, and the Navier-Stokes equations for a layer of 
viscous fluid of vanishingly small thickness lying above it (viscous 
film), to obtain the solution of the problem of gravitation-capillary 
waves on the surface of an ideal fluid produced by the action of surface 
tension. The conditions under which the viscous film seriously reduces 
the wave amplitude are found. 

According to existing theorems /l-3/, suppression of the surface film waves occurs either 
as a result of a reduction in the coefficient of friction at the phase interface, so that the 
energy transmitted to the fluid from outside is reduced, or else as a result of energy dis- 
sipation on deformation of the viscous film, or as a result of the appearance on the fluid 
surface of extra friction forces, dependent on the velocity, which lead to the vertical part 
of the motion being intensified, so that the energy dissipation of the lower fluid is increased. 

we discover in the present paper a further effect of film suppression which is independent 
of energy dissipation either in the film itself or in the fluid. The fact is that the 
tangential stresses on the film outside boundary are transformed into normal stresses, which 
are transmitted to the fluid below. Under certain conditions these extra normal stresses 
cause waves on the fluid boundary which have a phase shift relative to the waves caused by the 
normal stress. The wave interference can cause serious attenuation of the total wave. 

1. The plane problem of the wave motion of a two-layer flow (without velocity shift), 
consisting of a layer of ideal fluid of infinite depth and a viscous layer of constant thickness 
h, reduces to the boundary value problem /4, 5/ 
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Here, c is the fluid flow velocity, a,,a, are the surface tension at the free surface 
and the interface, PI,& are the densities, v is the kinematic viscosity of the upper layer, 
9 is the acceleration due to gravity, et = (uII,uXpJ, up = {Q, ~3 are the velocity vectors, and 
pX, Pn are the hydrodynamic pressures (subscript 1 refers to the upper, and 2 to the lower, 
fluid). The origin is on the undisturbed surface of the upper layer, and the z axis is 
vertically upwards. 

Let the active load be 
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We introduce the dimensionless quantities 

where f is a parameter characterizing the size of the zone of application of the tangential 
stresses. Then, applying a Fourier integral transformation to (1.1) with respect to t, we 
find the rise of the interface in the integral form 
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where P,,, r,* are the Fourier transformants of P., Q. 

2. Our further analysis is for the case when the upper viscous layer is vanishingly 
thin. Retaining th.e first two terms of the expansion of A and AS in powers of 8, we obtain 

rlr = qto I- srln -I- 0 (e*) (2.1) 

While the second term roll is not quoted, we take it into account in the numerical analysis. 

(2.2) 

Notice that, with a=O, the same result is obtained from (2.1) as when solving the problem 
on the motion of an ideal fluid covered by a thin viscous film when the equations of the 
theory of long waves of a viscous fluid are used. 

The first integral in (2.2) corresponds to the wave resulting from the action of normal 
stresses on the surface of the ideal fluid (this result, with e==O, was obtained in /2/). 
The second integral corresponds to the wave due to the action of the extra normal stresses 
transmitted to the lower fluid from the tangential stresses acting on the film surface. The 
amplitude of this wave depends on the intensity r . of the tangential stresses. Under certain 
conditions imposed on the physical parameters, the interference of these waves causes con- 
siderable reduction of the total wave amplitude. 

To illustrate this, let us evaluate the integral in (2.2). The integration is performed 
in four separate cases: PG4$ and ~20. The technique of evaluation is described in /2/, and 
the tabulated integrals are taken from /6/. we have 
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Pi (4 is the integral exponential function). 
Similarly, we find the solution when 4fi- P~G)C~>O 
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The amount of deformation of the interface falls exponentially as s or /y[ increases. 
Consider the wave motion of the fluid remote from the domain of disturbance. Then, (2.3)- 

(2.5) remain true, where weusefor q+the asymptotic expansion of the integral exponential. 
Retaining the first term, we obtain 

It follows from our results that, as the viscous film Y tends to zero, the contribution 
of the tangential stresses to the interface deformation remains finite. With F* - 4B 2 6, > 0 
we have 

It should be noted that the result (2.6) is independent of the small film thickness h 
and of the small viscosity Y. Thus a weakly viscous thin film greatly reduces the wave 
amplitude and deforms the interface. If F2<4@, system of waves arises, localized in the 
domain of action of the external load, whose amplitude falls exponentially with distance. 
A similar result was obtained in /l/ for a fluid without a film. 

The dependence of the wavelength L on the parameter ~!-F/i/fi is shown in Fig.1. With 

9>2 (which corresponds to Fa>48) the upper and lower branches describe the length variation 
of the gravitational and capillary waves. It can be seen that, as 11, increases, the length 
of the gravitational wave increases and the length of the capillary wave decreases. For $<2 
the lengths of both waves become the same and increase as J! decreases /2/. 

Minimization methods were used to find the physical parameters for which the total wave 
amplitudeissamll compared with the amplitude of the wave arising under the action of normal 
stresses only. Below we give an example which shows clearly how wave suppression occurs when 
external tangential stresses are introduced: A,, = 1.03.10+, Aprr = 1.15, 6 = 0.93, h = 1, d = 1, PI = 0.489, 
j3* = 0.275, y = 0.551, R = 5000, F = 1.3, A,, = 1.31, e, = 7.8f~.10-~. 

Here, A,, is the total wave amplitude, A,, is the wave amplitude under the action of 
normal external stresses only, A,, is the first correction to the total wave amplitude A, when 
it is expanded in powers of the small parameter a(A,= Al,,+ eAt,iO(~Z), A,,= maxv/qoll), E* is the 
maximum tolerable upper bound of E. In the calculations the choice of E. was based on the 
requirement that 1 e, A,,/AIo) = 1O-2. It can be seen that, when tangential stresses on the film 
surface are taken into account, we get a decrease of three orders in the wave amplitude. We 
calculate AM and A,, from (2.4) with e=O. 

IL7 

L 

5 

Fig.1 Fig.:! 

In Fig.2 we show the wave suppression by a viscous film (only the wave part of the 
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interface deformation is shown): 2 is the total wave arising under the action on the film 
surface of normal and tangential stresses, 2 is the wave arising under the action of normal 
stresses only, nao = 5.CHE. The parameter values are d = 0.93; h = 4.99, a = 5, P, = 12.3, & = 0.0025, y = 
0.0037, 21= 500, F = 1.09. In this case the thin film reduces the wave amplitude by one another. 
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AN INTERCEPTING VACUUM COINAGE IN 
FLOW OF GROUND WATER* 

V.N. EMIKH 

A boundary value problem is formulated describing two-dimensional steady 
filtration in a layer of soil of infinite capacity,towardsa horizontal 
vacuum drainage which captures partly or wholly, at some specified rate 
of drainage, thegroundwater filtering downwards from the soil surface. 
A solution of the problem is constructed using conformal mapping and the 
solution contains two unknown mapping parameters. A system of equations 
is derived for the latter parameters, and their unique solvability is 
established analytically. At the same time, a restriction on the 
filtration capacity of the drainage is revealed, corresponding to the 
critical mode (complete interception of the flow), A computer program 
is written for the algorithm used to compute, for the given parameters 
of the medium, the flow characteristics in the critical mode, and at some 
value of the drainage output chosen arbitrarilyfromthe interval of 
admissible values. Numerical examples are given. 

Horizontal vacuum drains are installed in the irrigated soil of infinite capacity. Their 
purpose is to intercept the irrigation water seeping through the root system from the surface, 
flooded with a thin layer of water. We will assume #at every stream associated with the 
action of one or another drain is symmetrical about a vertical line passing through the eentre 
of the drain. The side boundaries of the streams are free ,*and atmospheric pressure is 
maintained along them. For this reason the flows towards separate drains are themselves 
separate, so that we can speak of a system of drains in the model in question only in a con- 
ventional manner. 

The right half of the zone of action of one of the drains represented by a point drain B, 

(sink), is shown schematically in the 4 =++ iy -variable plane as a region of flow in Fig.la 
for the case when a proportion Q of the total (within the shaded region) inflow Q.. of surface 
water is intercepted by the drain, and the remainder Q. flows down to infinity. The correspond- 
ing domain of the complex potential w=cp+i$ is shown in Fig.lb. The investigation is carried 
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